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Abstract—NASA's space missions Dawn and JIMO will from non-spherical mass distributions in the central boidy o
use low-thrust propulsion for multi-revolution orbit trgflers ~ ten dominate the thrust. Yet even without these perturbsatio
around a central body. Here we address the problem of dewhere only a simple inverse-square gravity field is consid-
signing low-thrust orbit transfers between arbitrary telim  ered, low-thrust orbit transfers are particularly chatjiery to

an inverse-square gravity field by using evolutionary algo-design due to the large number of revolutions around the cen-
rithms to drive parameter selection in a Lyapunov feedbackral body and the difficulty of selecting thrust directionmsla
control law (the Q-law). We develop an efficient and effica-thrust arc locations. Such transfers have been studiedstt le
cious method to assess, with reasonable accuracy, the tradmce the 1950s [1][2]. While the ultimate goal may be to in-
off between propellant mass and flight time (i.e., to find theclude the full gravity field, as a first step we address in this
Pareto front for these two quantities), and to provide thieti  paper the problem of designing low-thrust orbit transfers b
history of the state variables and the thrust vector for dmoy ¢ tween arbitrary initial and final orbits in an inverse-saquar
sen point on the Pareto front. The examples considered agravity field. We couple the Q-law, which is a Lyapunov
several types of orbit transfers around the Earth and the ageedback control law developed by Petropoulos [3][4], with
teroid Vesta. The optimized Q-law leads to a Pareto fronevolutionary algorithms to select parameters in the Q-law.
that contains the few available optimal solutions founchwit

other trajectory optimization algorithms. The Pareto frign It has been demonstrated that the Q-law, with a reason-
obtained within a few hours of computation time. It is both able set of control parameters, efficiently finds approxénat
the high optimization quality and the high computational ef Pareto-optimal solutions (i.e., a propellant-optimalugioh
ficiency that make our method attractive as a guiding tool foffor a given flight time or a flight-time-optimal solution for a
the early design phases. given propellant requirement) [3][4]. On the other hand, a
grid sampling of the Q-law parameters suggests that a bet-
ter solution can be found if optimized Q-law parameters are
used [4]. Finding an optimal set of the Q-law parameters
for all possible orbit transfers is analytically impossifsind
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1. INTRODUCTION bit transfers. The five orbit transfers considered are those

sented by Petropoulos [4], or slight variants thereof, aned a

NASA's future space missions Dawn and JIMO will use elec-compared with optimal solutions from the literature, where
tric propulsion for inter-planetary cruise and orbital ope  these are available.

tions. The strength of electric propulsion is that in spité
low thrust levels, the momentum transfer to the spacecraft 2. Q-Law

per kilogram of expelled propellant is ten or twenty times i
greater than for chemical propulsion. However, the comtfol 1h€ Q-law was developed by Petropoulos [3] in order to pro-

continually-thrusting, low-thrust spacecraft poses dlehg- ~ Vide good initial guesses for propellant-optimal low-ttrar-
ing design problem, particularly for orbit transfers ardun bit transfers. The Q-law determines when and at what angles

a central body. Third-body perturbations and perturbation t© thrustbased on the proximity quotient ternt@dThe func-
tion @ judiciously quantifies the proximity of the osculating

— orbit to the target orbit. In the Q-law, the central body is
0-7803-7231-X/01/$10.082002 ieee deled . d bing f
IEEEAC paper # XXX modeled as a point mass, and no perturbing forces are con-



sidered. We summarize in the remainder of this section th&he scaling function is used primarily to ensure convergenc

Q-law from Ref. [4]. to the target orbit and takes the form

The Q-law consists of two main control rules. 1) The Q-law a—ap|" 1

chooses the thrust angles which redgcmost quickly at the { — ] force=a )
- T

current instant. 2) The Q-law determines whether to thrust o )
coast according to a given thrust effectivity threshalg, < 1 force=e,i,w,

[0,1] as follows: _ o
wherem, n, andr are scalars. The distance function is de-

thrust if 7@%’5 % > Neut (1) fined as
N, 3,60
ming 5O o|e— cer force=a,e,i
coast  if — =P <, 2) d(ce cer) = (6)
ming g0 Q cos™ ! [cos(ce— ogr)] for ce= w, 2

whereQ) is the time rate of change 6f, « and;3 are the thrust
angles (more specifically, the azimuthal and elevationemngl|
of the thrust with the pole being given by the osculating or-
bital angular momentum), andlis the true anomaly of the
osculating orbit.min, 5 Q is the minimum ofQ over and

(3 ata giverd, whereasnin, s ¢ Q is the minimum ofQ) over

a, (3, ando. Thgs.’%“t is a handle to control the minimum sign of the derivative indicates whethegxleads or lagse,
tolerated effectivity of the thrust. In general, a larggg; based on the short way round.

leads to a smaller propellant mass used and a longer flight
time.

where the principal value, namely with[f, 7], is used for

the arc cosine. The specific form of the distance function
for w and(2 is used because it provides an angular measure
of the distance between two positions on a circle using the
“short way round” the circle, because it is differentiablighw
respect tooe[except whend(cg 0gr) = ], and because the

As shown above, the Q-law specifies the general form of
the proximity quotienty and the general rules for optimal
thrust angles and thrust-arc locations. However, to mainta
: I pth ) a certain degree of flexibility, the Q-law involves a set of
using a 5"-6"-order Runge-Kutta-Fehlberg algorithm. At ;0 a1 barameters or weights which can be set by a mis-
each integration step, the Q-law p_rowdgs an lndI(_:at|o_n O%ion designer to specific values. The set is composed of
whether to apply thrust or not, and, if so, in which direction W, We, Wi, We, W, Wp, m, 10,7, Tymins k. AS dis-

e cuty VWa, Ve, VWi, VVw, VWG, VV P, 110, T4, T T pmin, .
The thrust, when on, and the specific impulse are assumeiﬂssed in Sec. 4, these parameters have nominal values that
constant. should allow the Q-law to perform reasonably well for most

Th o . hich didate L orbit transfers. The goal of the evolutionary algorithmois
€ proximity qu0t|enQ, which serves as a candidate Lya- g, Pareto-optimal parameter sets for any given orbit feans
punov function in the Q-law, is defined as follows:

Orbit propagation is done by numerically integrating Gauss
form of the variational equations for the orbit elements|[14

problem.
d(ce cer)]?
Q= +WPP)ZW(BSCE[T:| 3. Q-LAw OPTIMIZATION WITH GA AND SA
CE X
for &= a,e,i,w, . 3) Mathematically, the Q-law parameter optimization problem

is expressed as
The five orbital elemento§ are the semimajor axis), ec-

cent_ricity (), inclination (L) argument of periapsisJs§, and minimize y = {t;(x),m,(x)} €Y, @)
longitude of the ascending nod®){ Wp and theWe are

scalar weights greater than or equal to zero; the subsEript where x - = {Wa, We, Wi, Wo,, Wa, Wp,

denotes the target orbit element value (without subsdtit, My N, 7, pminy B, Neus, 05 ) € X (8)
osculating value is indicated)g. denotes the maximum over

thrust direction and over true anomaly on the osculating orb Here,x is the Q-law parameter vectgr,the objective vector

of the rate of change of the orbit element (due to thrust). Thgiven by the required flight timet {) and the required pro-
analytical expressions fag, are available in Ref. [3]Pisa  pellant massi,) for a given orbit transferX the decision
penalty function;Seeis a scaling function; and(ce cer) isa  space, and’ the objective space. We add one more parame-
distance function. The penalty function is used in the prese ter to the decision space; the initial true anomalywhich is
paper to enforce minimum-periapsis-radius constraints annot a Q-law parametgrer se but a mission-design parameter.

takes the form One decision vectat; leads to one candidate trajectory with
, a final fight time and a consumed propellant mass, that is, an
P =exp {k (1 - p' )} (4)  objective vectowy;. In the following paragraphs, we will de-
pmin

scribe how the optimization problem is solved with two evo-
wherek is a scalary, is the osculating periapsis radius, and lutionary algorithms: a genetic algorithm and a simulated-
Tpmin IS Near or equal to the lowest permissible value.of  annealing algorithm.



Genetic Algorithm optimal solutions that is sensitive to the weight vectorduse
Genetic algorithms (GA), first introduced by John Holland " the weighting process. In contrast, the nondomlnatekd sor
. . ing process equally encourages all nondominated solutions
and his colleagues [5], are search algorithms based on the mg . ; : ;
. ; : to survive [12]. The nondominated sorting genetic algo-
chanics of natural selection and sexual reproduction. GAs a

i S . rithm (NSGA) was shown to be superior [6] to other multi-
theoretically and empirically proven to provide robustrsba oo : .
. objective evolutionary algorithms such as the vector evalu
in complex spaces. Furthermore, they are not fundamentall

o _ . dted genetic algorithm (VEGA) [7], the niched Pareto geneti
limited t_)y r_estnctlve _assumptlons ?‘bo.““he search spatfe s algorithm (NPGA) [8], and the multi-objective genetic algo
as continuity and existence of derivatives.

rithm (MOGA) [9]. Hence, we apply NSGA to optimize the

The standard GA proceeds as follows. A possible solutiorQ_laW parameters.

of a given problem is encoo!ed_ asa f|n|te. string of Symb.OISThe nondominated sorting proceeds as follows. First, the

known as the genome. An initial population of the possible . o - . .
nondominated individuals in the current population areide

solutions called individuals is generated at random orikeur . . . ; : .
tically. At every evolutionary step, known as a generattha t|f|e_d as described n the. Appendix. The. same f|_tness value is
| ' ', assigned to all the individuals constituting the first nomeo

individuals in the current population are decoded and evaluinated front. The individuals are then ignored temporarily

and the rest of the population is processed in the same way

lected according to their fitness. Many selection procemlure?o identify a new set of nondominated individuals. A fithess

. : . .. “value that is smaller than the previous one is assigned to all
are currently in use, one of the simplest being Holland'g-ori o . )
) : i : LI the individuals belonging to the second nondominated front
inal fitness-proportionate selection, where individuaésse-

lected with a probability proportional to their relativeniéss. This process continues until the whole population is cféeski

This ensures that the expected number of times an individ'—nto nondominated fronts.

ual is chosen is approximately proportional to its relatiee- . :

formance in the population. Thus, high-fithess individualss'muwIted Annealing

stand a better chance of reproducing, while low-fithess oneSimulated annealing (SA) is a widely used and well-

are more likely to disappeatr. established optimization technique especially for high-
dimensional configuration spaces [10][11]. The goal is to

The parent selection process is followed by genetically-minimize an energy functio® (in our case, the required

inspired operators to form offsprings. The most well knownflight time and propellant mass), which is a function /éf

operators are crossover and mutation. Crossover is pegtbrm variables (in our case, the Q-law parameters), wittbeing

with probability p...ss between two selected parents, by ex-a large number. The minimization is performed by randomly

changing parts of their genomes to form two offsprings;sn it changing the value of one or more of thé variables and

simplest form, substrings are exchanged after a randomly seeevaluating the energy functidi. Two cases can occur: 1)

lected crossover point. This operator tends to enable the evthe change in the variable values results in a new, lower en-

lutionary process to move toward “promising” regions of theergy function value; or 2) the energy function value is highe

search space. The mutation operator is introduced to preveonr unchanged. In the first scenario the new set of variable

premature convergence to local optima by randomly samplingalues is stored and the change accepted. In the second sce-

new points in the search space with some probalbyility;. nario, the new set of variable values is only stored with a cer

Genetic algorithms are stochastic iterative processéstiha tain likelihood (Boltzmann probability, including an arate

not guaranteed to converge. The termination condition mayng temperature). This ensures that the overall optinopati

be specified as some fixed, maximal number of generatioralgorithm will not be trapped in local minima too easily as is

or as the attainment of an acceptable fitness level. the case with greedy downhill optimization. As the anneal-
ing temperature decreases in the course of the optimization

The standard GA requires a ranking/evaluation scheme iprocess, an energetically unfavorable step is less lilkebet

the process of fithess assignment, which depends on opccepted (cooling schedule). The procedure is repeated un-

timization problems. Optimizing the Q-law parameters istil the annealing temperature has reached its end value or a

a multi-objective optimization problem, because both pro-preset number of iterations has been exceeded.

pellant masses and flight times need to be minimized. In

such a problem, there may not exist one solution that idVe apply a derivative of the canonical SA algorithm to the

best with respect to all objectives. Therefore, the goal olow-thrust-trajectory optimization problem, by replagithe

the multi-objective optimization problem is to determihet Boltzmann probability acceptance with an energy threshold

trade-off surface, which is a set of nondominated solutioracceptance: each configuration with an endigy. F,in +

points known as Pareto-optimal or non-inferior solutions. Fyyesho1q Will be automatically accepted, withy,yeshola 0S-

A conventional way to solve multi-objective problems is cillating between two preset boundaries (“simulated rehea

to transform the original problem in a single-objective pne ing and cooling”).

by weighting the objectives with a weight vector. How-

ever, this process tends to lead to a subgroup of Pareto-



Table 1. Initial and final orbit elements, thrust characteristsggacecraft initial masses, and central bodies associatedhe
orbit transfers studied in this paper. The orbit elemergggaren by the semimajor axis), the eccentricityd), inclination ¢),
argument of the periapsig), and longitude of the ascending nod® (The true anomaly) is left free for both the initial
and final orbit.

Case|| Orbit a e i w Q | Thrust Specific Initial Centra

(km) (degree) (degree) (degree) (N) Impulse (s) Mass (kg) Body

A Initial 7000.00 0.010 0.050 0.0 0.00 1 3100 300 Earth
Target| 42000.00 0.010 free free free

B Initial | 24505.90 0.725 7.050 0.0 0.0D 0350 2000 2000 Earth
Target| 42165.00 0.001 0.050 free free

c Initial 9222.70 0.200 0.573 0.0 0.00 93 3100 300 Earth
Target| 30000.00 0.700 free free free

D Initial 944.64 0.015 90.060 156.9 -24.600'0045 3045 950 Vesta
Target 401.72 0.012  90.010 free -40.7B

E Initial | 24505.90 0.725 0.060 180.0 180.00 5 2000 2000 Earth
Target| 26500.00 0.700 116.000 270.0 180.00

4. ORBIT-TRANSFERRESULTS out the imposition of a feedback control law). Due to the

The parameters of the Q-law are optimized by GA and SAd|1‘f|culty of the optimal control problem, there is a dearth

for five different types of orbit transfers. Table 1 lists the of optllmal, many-revolution orb|t_ transfers in the litare,
) . ) - especially when coast arcs are involved or when the trans-
tial and final orbit elements, thrust characteristics, speaft

initial mass, and central bodies associated with the fiva orbf.er is complex. For each case we present the computaﬂon
time needed to generate the Pareto front, and, where possi-

transfers termed case A, B, C, D, and E. These cases corrg: ) : . .
spond to those in [4], except that for case E the plane of theBle, compare this to the times needed to obtain the optimal

initial orbit is changed by 0.12 degrees. As is customari wit Solutions reported in the literature.

the classical orbit elements, values of zero are not used f

t_he eccentnqty and |,ncI|nat|on on aC(.:Ol.mt of the s_lngular get valuesJ¥oe = 0 for orbit elements without target values,

ties present in Gauss’s form of the variational equatiofe T . .

) . andm = 3,n = 4,r = 2 for the scaling function of the

orbit transfers range from the simpler, where few elements_ . . ; . .
emimajor axis.. The penalty function to enforce minimum-

have target values, to the more complex, where not only do all

elements have target values, but also where temporarg larggenapss—radms constraints is applied only for case DEnd

e : rbit transfers. The penalty function of the nominal Q-law
sacrificial changes must be made in some elements to changgesW — 1k — 100 andr - — 300 km for case D and
p — 4 - ) pmin —

more effectively other elements, until all elements cogeer rmin = 6578 km for case E. The Pareto front of the nominal

on their target values. Recall that to effect an orbit transf O-law is acquired by varying the thrust effectivity threkho
the Q-law not only provides thrust angles but also an indica- €0 1](21nd the ?/nitialytruge anomal; < [0 27T]y
tion of whether to thrust or coast. Thus, the Q-law can examZeut ’ ‘ e

ine the trade-off between propellant mass and flight time: TQI'

obtain short flight times, more propellant must be used,avhil . . - -
when longer flight times are allowed, the required propdallanp()pu"fjItlon siza\,, = 1000 for case A, B, C andv, = 2000
. ) S for case D and E, the number of generatidis= 100, the
mass is reduced. As the permitted flight time increases-even - oo replacement raje. = 0.1, the crossover prob-
tually there are diminishing returns on the saved propellanp b P CT o b
. . : . ability p. = 0.8, the mutation probability,,, = 0.3. The
mass, and so the flight time will typically be capped at some__,_: . . . .
large-enouah value for each of these transfers relatively high mutation rate is chosen to preserve therdive
9 9 ' sity of the population. Each Q-law parameter is represented
as a real-valued gene. The fitness of each individual is as-

The Pareto fronts (in propellant mass and flight time) ob-

tained with the optimized Q-law are compared with those Ob_S|gned according to the nondominated sorting as descibed i

tained with the nominal (unoptimized) Q-control law. Fur- Sec. 3. Possible parents are selected by tournamentdgne., r
b ' domly pick two individuals and choose the one that is better
thermore, for cases A, B, C, and D, we assess how well th : . s
D itted). The crossover is performed by choosing one point in
Pareto front of the optimized Q-law matches the performanutnhe gene string at which the two strings are crossed. The mu-
of individual optimal transfer trajectories reported ie ther- i

ature, computed using optimal control techniques (i.ehwit tation is performed by randomly choosing a gene in the string
’ P gop q ' according to the mutation probability and resetting theegen

0I':he nominal Q-law useld/ge = 1 for orbit elements with tar-

he GA optimization uses the following GA parameters: the



randomly within a given range. law by about 0.6% in minimum flight time and about 1.9%
in minimum propellant mass. The optimized-Q-law trans-
The SA optimization uses as fitness function the sum of théer with the lowest propellant mass has a flight time of about
consumed propellant mass and the flight time. The design &30 days, even though the maximum-permitted flight time is
this fithess function results in an approximately equal-opti 500 days. The distance from the flight-time cap is due to the
mization of both the consumed propellant mass and the flighfiact that the propellant mass is already very close to its min
time. Thus, a complete Pareto front cannot be expected fronmum value, and that beyond about 250 days, the flight time
this fitness function. By replacing the flight time in the fisse becomes very sensitive to the value)gf;, making it difficult
function with the relative difference between the curraghfi  to populate the Pareto front beyond this flight time.
time and a specified flight time and by varying the specified
flight time, one can obtain a complete Pareto front. The SAOne of the limitations of the nominal Q-law for this trans-
optimization runs on a single processor, but it can be tfwia fer is that the nominal Q-law excludes a subgroup of Pareto-
parallelized by deploying N specified flight times on a cluste optimal solutions. As shown in Fig. 1, the nominal Q-law

of N processors. provides two families of Pareto-optimal solutions: one for
short flight times {4 < ¢y < 17) and the other one for long
Case A Orbit Transfer flight times (t; > 140). No solutions are found for the in-

. . . . . termediate flight times1( < ¢ty < 140). In contrast, the
Case A is a simple coplanar, circle-to-circle orbit transfe - . X )
: . . o GA-optimized Q-laws lead to Pareto-optimal solutions in a
from low Earth orbit to geostationary orbit. No periapsisa€o . : ; . L .
S . wide range of flight times without any significant gap. This
straint is imposed during the transfer, as the natural dynam_ . .
) o . . indicates that some Q-law parameters besiggs strongly
ics does not decrease the periapsis altitude. The maximumlee o oo ctories to be taken
permitted flight time is 500 days. Figure 1 shows the Pareto J '
front obtained with the n_om|_nal Q-law and the optlmlzed_ Q To show which parameters are important in determining the
law. Note that each solution in the Pareto front for the optim ; . . :
X : : : trajectory pattern, we investigate a correlation betwden t
Q-law is obtained with a different set of Q-law parameters. .. : ;
N . optimal parameters and the flight time (or the propellant
As shown in Fig. 1, the GA Pareto front dominates the Pareto .
i . mass). While other Q-law parameters do not show much cor-
front given by the nominal Q-law. ; .
relation, the optimal sefiW,,, W., n..t} Show a strong cor-

The Pareto-optimal solutions found by GA and SA are COm_relatlon with the flight time, as shown in Figure 2. For ex-

. ) . : ample, the trajectory with flight time 50 days can be found
pared with two analytical solutions that approximately hdu only with TV, — 55%, W, = 45% andrey, — 0.84, while

fer. The Edelbaum transfer provides an approximate Iowe?rhe rest of Q-law parameters can vary widely yet yield com-

limit for the required flight time [13], while the Hohmann parable performance. This sensitivity/correlation agsialpe-

) r . tween the Q-law parameters and the resulting trajectory sug
transfer [14] sets an approximate lower limit for the regdir . I .
propellant mass. The Edelbaum transfer is a continuou§eStS that the Q-law can be effectively optimized by varying

thrust, minimum-time transfer based on orbit averagings Th only {Wa, We, 7jcut }-
Hohmann transfer utilizes two thrust impulses, that is, itwo . :
. . . We present examples of the three families of trajecto-
stantaneous large changes in velocity each without change I, ~ ! i . . X ;
- . . : ; , ries in the Pareto front: for flight-time optimal solutions,
position. Applying thrust impulsively is much more efficten . : . ! .
S X . propellant-optimal solutions, and intermediate-fligihte so-
than applying it continuously over an orbit, and so the pkope | . e g )
. : lutions found by the optimized Q-law. The flight-time-
lant required for the Hohmann transfer (assuming the thrust _: . . . _ .
o . optimal trajectory is roughly a circular spiral, increasgithe
can be arbitrarily large) is much less than that needed for co L ) : AR .
: . semimajor axis while maintaining the eccentricity close to
tinuous thrust. In the case of low thrust, these large vloci

L .~ zero, as shown in Figs. 3 and 6. The propellant-optimal
changes can be accumulated gradually by utilizing a sefies g . N S
2 rajectory takes a quite different form, maintaining thensa
small thrust arcs. As these thrust arcs become infinitesimal

size, the propellant requirement will converge to that meeed penapsis ””F" the apoapsits becqmes super-synchronm_djs, a
for the Hohmann transfer. then increasing the periapsis radius to near the targed viu

nally driving both apoapsis and periapsis radii to theigéds,

as shown in Figs. 4 and 6. As expected, the intermediate-
flight-time trajectory, shown in Figs. 5 and 6, is a hybrid
between the flight-time optimal and the propellant-optimal

When the Q-law optimized with GA is used, the flight-time-
optimal solution is about 0.04 days away from the lower limit

of the flight time (14.42 days), and the propellant-optineal s trajectories, increasing the periapsis and apoapsis &ineH

lution is about 0.14 kg away from the lower limit of the pro- ously. The trajectory initially increases both the ecdentr

pellant mass (34.97 kg). In contrast, the flight-time optima.. o . "
solution found by the nominal Q-law is 0.11 days away, anofty and the semimajor axis, and later reduces the eccatrici

the propellant-optimal solution is 0.82 kg away. This compa while continuing to increase the semimajor axis.
ison clearly shows that the optimization of the Q-law with GA

essentially matches the theoretical flight-time and piapel

bounds, having improved the Pareto front of the nominal Q-
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Figure 8. Case B: Optimal Q-law parameters found by GA
with respect to flight time. OptimaV/,,, W., W, are normal-
ized to make their sum to be 100%.

Figure 7. Case B: Trade-off between propellant mass anc
flight time. The Pareto fronts generated by the nominal Q-
law and the GA optimized Q-law are plotted in compari-

son with the Pareto-optimal solutions found by Geffroy and
Epenoy using an orbit averaging technique.

Case B Orbit Transfer tained by varying the thrust effectivity threshajd,; € [0, 1]

and the initial true anomaly; € [0,2x]. The Pareto front
Yor the GA optimized Q-law is generated by optimizing
r{V[/a,We,m,n,r, Neut, 0} The GA optimized Q-law pro-
vides a better estimation of the Pareto front than the nom-

son with the Pareto front generated with the nominal Q—Iawizgl)r?s'l]% Vzn%a\rlyif# I?r:g ;O{ir?wtiwzoar:i(:lr:gtr:)to'lﬂrl\?lez.ticSaerger?c:tfe %—
the improvement of the Pareto front with the optimized Q-law b y P

is dramatic. A propellant savings of about 5-15% is achieveér?;;]:_:nC)r[Tl]gieI [Ils%n'Tthséﬁr::sgzstgﬁ 2thag\|l\cllsd%naair?hlz C;;rté?g?rlgm
with the optimized Q-law. To verify the quality of the im- ) P

proved Pareto front, we compare it with the two optimal tra_generated by the optimized Q-law is as good as the Mystic

jectories found by Geffroy and Epenoy using an orbit averag-SOIUt'ons'

mg_techmqug [15]. The inset of Fig. 7 Shows that our Pareto:l_he optimal Q-law parameters found by GA are plotted with
optimal solutions are as good as the solutions found by Gef- fliaht time in Fi h : d
froy and Epenoy. respect to flight time in Fig. 10. T. e optlmw’a, .We an

' Neut are strongly correlated to the flight time, while other Q-

An analvsis of the correlation between the ootimal Q—Iawlaw parameters show a weak correlation. In general, flight-
Y P time-optimal solutions hav#/’. /W, > 1, while propellant-

parameters and the flight time is shown in Figure 8. The

. . . optimal solutions havéV./W, < 1. This means that
dense populations of optim&y, around 10%, optimalV, . : . ; : L
i the flight-time-optimal solutions emphasize the ecceityric
around 20%, andlv; around 70% show that the nominal Q- . " Lile ‘the propellant-optimal solutions emphaske t
law (W, = W, = W;) is not an optimal choice. As expected, 9 prop P P

the thrust effectivity thresholgl..,; is the important parameter semi-major axis target.
to control the flight time. Other Q-law parameters, (., r)

and the initial true anomaly() show a weak correlation with
the flight time, indicating that these parameters are noties ¢ Case D is roughly a circle-to-circle orbit transfer arouhd t

Case B is a transfer from a slightly-inclined geostationar
transfer orbit to geostationary orbit. The maximum-petaoit
flighttime is 1500 days. Figure 7 shows the trade-off betwee
propellant-mass and flight-time for this transfer. In conipa

Case D Orbit Transfer

ical asW,, W., W;, andn., in the Q-law optimization. asteroid Vesta, involving a small plane change. The flight
time is capped at 300 days. Figure 11 shows the trade-
Case C Orbit Transfer off between propellant mass and flight time for this trans-

fer. The Pareto front of the nominal Q-law is obtained by

Case C is a transfer from a low-eccentricity elliptic orbit varying the thrust effectivity thresholg., € [0, 1] and the

to a coplanar, high-eccentricity, larger elliptic orbitjthva initial true anomalyd; ¢ [0, 2x]. The Pareto fronts of the

maximum-permitted flight time of 20 days. Figure 9 shows - i . . )
the trade-off between propellant mass and flight time forGA optimized Q-law are generated in three different ways:

this transfer. The Pareto front for the nominal Q-law is ob-the first Pareto front (GA Q-law ) is obtained by optimizing
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Figure 9. Case C: Trade-off between propellant mass a Figure 10. Case C: Optimal Q-law parameters found by
flight time. The Pareto fronts generated by the nominal Q- GA with respect to flight time. A strong correlation between
law and the optimized Q-law are plotted in comparison with {W,, W, n..+} and the flight time is observed, while other
several Pareto-optimal solutions found with the optimaat ~ Q-law parameters show a weak correlation.

tool Mystic.

{Wa, We, Wi, Wa, neut, 0 }, the second Pareto front (GA Q- ted with respect to the flight time in Figure 12. Op-
law 1) by optimizing {W,, W., W;, Wq, neut, 65, m,n, 7}, timal W,, W., W;, Wq are normalized to make the sum
and the third Pareto front (GA Q-law Ill) by optimizing to be 100%. The Q-law optimization shows a greater
{Wa, We, Wi, eu, 0, m,n,r, Wp, rpmin, kY. In compari-  correlation for{W,, We, Wi, Wa, njcut, 0;, m, n,r} than for
son with the nominal Q-law, the GA optimized Q-law im- {W),,r,min,k}. This explains the similarity between the
proves an estimation of the Pareto front for all the flightggm Pareto front generated with GA Q-law Il and the Pareto front
considered. The GA optimized Q-law leads to a propellangenerated by GA Q-law IlI. As in other transfers, this tramsf
mass savings as large as 16%. More promisingly, the Paretshows a strong correlation betwegn,, and the flight time.
optimal solutions found with the optimized Q-law are as goodHowever, the correlation does not follow the monotonous
as the solution found by Whiffen using the static/dynamictrend that a larger...; leads to a longer flight time. The opti-
control algorithms coded in Mystic [17] [18]. mal 7., shows a discontinuity around a flight time 60 days.
The discontinuity also appears in other optimal Q-law param
Among the three GA optimization schemes described abovesters such ab/,, W,, Wq,. This indicates that the pattern of
GA Q-law Il and GA Q-law Il outperform GA Q-law | but the trajectory changes around this flight time.
the difference between GA Q-law Il and GA Q-law Il is
insignificant. This result indicates that the trajectoryeslo To understand the cause of the discontinuity of the optimal
not depend strongly okWp, r,min, k} (the parameters of Q-law parameters, we examine the trajectory for a flight time
the penalty function for the minimum periapsis constraint)just below the discontinuity point (T1) and that for a flight
and thus an accurate Pareto front can be obtained by optiime just above the discontinuity point (T2). Figure 13 skow
mizing only {W,, W, W;, ncut, 6:, m,n,r}. The difference orbit elements as a function of time during the orbit trans-
between the Pareto fronts generated by GA Q-law | and GAer. The two trajectories show a significant difference ia th
Q-law II (or IIl) becomes smaller as the flight time becomestime history of the eccentricity, while other orbit element
longer. This sheds some light on the effect of the Q-law pa{a, i, w, 2) show a small difference. T1 keeps the eccentricity
rameters{m, n,r} on the Q-law performance. The parame- close to zero all time, but T2 shows a large increase and de-
ters{m,n,r} are introduced for the scaling function in the crease of the eccentricity during the orbit transfer. Traad
semimajor axis to ensure the convergence of transfers whicis similar to that observed in Case A, where the circulargpir
involve an increase in the semimajor axis. However, the semirajectory (Edelbaum-type transfer) is flight-time optiraad
major axis steadily decreases in this orbit transfer, ssiyggg ~ the elliptic trajectory (Hohmann-type transfer) is prdpet
that the scaling function is not needed. Therefore, it ifggre  optimal. The two types of trajectories can be obtained with
able to select a parameter get, n, r} that yields the small- the Q-law by either emphasizing the eccentricity targetdr n
est possible modification to the distance function. This result is also observed in the distribution of the opiim
W, in Figure 12. The optimdlV, is greater for short-flight-
The optimal Q-law parameters found with GA are plot- time solutions than for long-flight-time solutions.



B
>

A Normal Q-law 3.28 T T
o GAZEwl
4.21- faw i |
o GAQ-law Il
o SA Q-law 3.24— ] 100g ETTT ‘i.‘ g
4.0 * Mystic - % b % 10F = ".-\'i
5 L iz R
x S £ 4
<38 = ] ]
0 E E 3
2 o P S
S 3.6 1.0
= o
S 0.8j ]
3 3.4 506 E
Q 4 |
81, < o4y o
a . 0.2 |
ool L v ||
3.0 30 3
28 o
2.8 26 E
| . 2.4 t;
2 \ | ) | | | 1 22 E
620 40 60 80 100 2% 40 60 80 10% o 80 *%0 40 60 60 10020" Jto‘ f‘so‘ ‘807
Flight Time (days) Flight Time (days) Flight Time (days) Flight Time (days) Flight Time (days)

Figure 11. Case D: Trade-off between propel- Figure 12. Case D: Optimal Q-law parameters found with GA with
lant mass and flight time. The Pareto fronts are respect to the flight time. The overall distribution of theioyal param-
obtained with the nominal Q-law and with the Q- eters shows that the Q-law performance is more sensitiveetahoice
law optimized with GA. A flight-time optimal so-  of {W,, W, Wi, Wa, neut, 0, m, n,r} than{Wp, r min, k}.

lution is found by the Q-law optimized with SA.

A Pareto-optimal solution found by Mystic is also

plotted for comparison.

—— Flight Time 58 days
- Flight Time 62 days |

Time (days)

Figure13. Case D: Orbit elements as a function of time for a Paretaymbtrajectory with flight times 58 days (just below the
discontinuity point of the optimaj.,; shown in Fig. 12) and 62 days (just above the discontinuitytpoA large difference in
the time history of the eccentricity between the two trajeies is observed, while other orbit elements show littfeedence.



Case E Orbit Transfer Table 2. Computation times required to obtain a Pareto
. . front with the Q-law optimized with GA and SA for each

Case E is a transfer from a geostationary transfer or- orpit transfer. SA computation was performed in a single

bit to a retrograde, Molniya-type orbit, involving a large  processor, while GA computation was performed on ten

plane change. ~The maximum-permitted flight time is processors in parallel and thus required wall-clock tinz th
300 days. Figure 14 shows the trade-off between propel- is one tenth the listed computation time.

lant mass and flight time for this transfer. The Pareto front
for the nominal Q-law is obtained with varying.,. €

[0,1] and the initial true anomaly; € [0,27]. Three Orbit Transfer Computation Time (minutes)
Pareto fronts are generated with GA optimization as fol- Case GA SA

lows: the first Pareto front (GA-Q-law 1) by optimizing A 705 311

{Wa, W, W;, W,,, W }. the second Pareto front (GA Q-law B 800 1351

Il) by optimizing {W,, We, W, W,,, Wa, m,n,7, feus, 05 }, C 57 2656

and the third Pareto front (GA Q-law IllI) by optimizing D 1548 4133
{Wa, We, Wi, Woy, Wo, m,n, 7, Neus, 05, We, Tpmin, k. The E 2480 2278

GA optimized Q-law provides a better estimation of the
Pareto front than the nominal Q-law for all the flight times
considered. A propellant mass savings as large as 30% is
obtained with the GA optimized Q-law. Like Case D, GA semimajor axis reaches its maximum 100,000 km. The dif-
Q-law Il and GA Q-law IIl outperform GA Q-law | in this ference is directly related to the orbit-transfer eneagetin
case, while the difference between GA Q-law Il and IIl is in- which the plane change with a larger apoapsis radius is pro-
significant. This result reflects the degree of influence ohea Ppellant efficient. The longer flight-time trajectory takesttier
Q-law parameter on the Q-law performance. The differenc@dvantage of the energetics. The top panel of Fig. 16 illus-
between GA Q-law | and GA Q-law 11 (or IIl) becomes larger trates the time history of propellant usage during the trans
as the flight time increases in contrast to Case D. fer. The shortest-flight-time trajectory uses propellaithw

an almost constant rate. The longer-flight-time trajeesori
The optimal Q-law parameters found with GA are plotteduse propellant with a lower rate during the first stage of the
with respect to the flight time in Figure 15. The overall distr  Semimajor-axis increase followed by a higher rate of propel
bution of the optimal Q-law parameters shows the greater sef@ant consumption in the second stage of the plane change.
sitivity of the Q-law performance toW,,, W, W;, Wq, cut }
than to {m,n, r, W, 7,min, k}. The optimalr.,, shows a ~Computational Requirement

strong correlation with flight time as was found for other 1o compytation time required to obtain the Pareto front for
transfers. A strong preference fqr the relative size h«}_mar each orbit transfer is listed in Table 2. Case C requiresa rel
Wi > Wo > W, > W, > W, is observed for all flight el short computation time because the evaluation oheac
times. Q-law takes less time due to the short flight time in this or-
. . _ _ bit transfer. Beside Case C, the required computation time
Case E specifies changes in all orbit elements, making S between 700 to 2500 minutes. For Case A, B, and C, the
_the most complicateq transfer among the five transfers_ stuch computation evaluates 10,000 sets of Q-law parameters,
ied here. We examine how the change of each orbit elegjie for Case D and E it evaluates 20,000 sets of Q-law pa-
ment interacts with other orbit-element changes. Figure 16, \iars. Therefore, the time to evaluate one set of Q-law

shows the tlme_ hlstory_ of ea_lch orbit element for four differ- parameters (equivalently to obtain a candidate trajectaty
ent Pareto-optimal trajectories found by GA Q-law Ill. FOr 4, 55qign its fitness) is only about 0.1 minute on average.
the all four trajectories, the plane changes (i,e:, Q?) occur

when the semimajor axis nearly reaches the maximumvalueg, ,qdition to the efficient evaluation of candidate 0-

and the increase of the semimajor axis is accompanied by 6}st/trajectories, GA and SA are amenable to a parallel

Incréase of the ecceptnc!ty. T_h's behavior stems frpm th‘?:omputing implementation thanks to the independent eval-
orbit-transfer energetics, in which the larger apoapsifus®s | oion of each candidate Q-law/trajectory in the popula-

(i.e. larger semimajor axis and larger eccentricity) re&ide  yjon/ensemble. The parallel computation significantly re-

cost of the plane change in terms of propellant consumptiony,,ces the wall-clock time for a given computational load:. Fo

i ) , ) this work, the GA computation was performed on 10 proces-
Figure 16 also unveils a general trend in orbit-elementy ¢ iy parallel, thus requiring a wall-clock time that isson
changes with respect to the flight time. The trajectory withye e, of the computation time listed in Table 2. It is the $hor

a longer flight time involves a larger change of the semimas, 41.clock time (70 — 250 minutes ) that makes our optimiza-

jor axis and a later start of the plane change. For examplgjon method attractive as a guiding tool for the early stage
the shortest-flight-time trajectory (the solid line) ext8tan ¢ nission design where many possible scenarios need to be
early start of the plane change as the semimajor axis pealg a1 ated. It is important to note that our method produces a

at 50,000 km. In contrast, the longest-flight-time rajefto paretg front (i.e., a group of Pareto-optimal solutionghisi
(the line with circles) shows almost no plane change unéil th ¢, hours, while other optimization algorithms tend to re-
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Figure 15. Case E: Optimal Q-law parameters found by GA with respect to

propellant mass and flight time. The Pareto flighttime. There is a strong correlation betwegg, and the flight time, while

fronts are obtained with the nominal Q-law
and the Q-law optimized with GA and SA.

other Q-law parameters show a weak correlation. A stronfgpmece for the
relative size hierarchi¥; > Wq > W, > W, is observed for all flight times.
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Figure 16. Case E: Consumed propellant mass and orbit elements as@ofunf time for four Pareto-optimal trajectories
among the solutions found by GA Q-law Ill. The solid line i®ttrajectory with flight time 60 days, the dashed line is the
trajectory with flight time 156 days, the line with x symbdsthe trajectory with flight time 275 days, and the line wittclgs

is the trajectory with flight time 482 days. As a general pattéhe trajectory with a longer flight time involves a largbange

of the semimajor axisa) and a later change of the inclinatiof) &nd the argument of the periapsis (



quire a similar amount of computational time as well as somesystems [19].

user interaction to acquire just a single Pareto-optinaal tr

jectory: The Mystic solutions of Case C each typically took
between 6 and 24 hours to run (although one took about
week), and the Mystic solution of Case D took about a hal
day [4][17].

5. CONCLUSIONS

For the design and optimization of trajectories powered
by low-thrust propulsion, we have developed an effica-
cious and efficient method to obtain approximate propellan
and flight-time requirements and Pareto-optimal trajéesor
The method involves a two-level optimization process: i)
Lyapunov-optimal thrust angles and locations are detegthin
with the Q-law, ii) the Q-law is optimized with two evo-
lutionary algorithms: a genetic algorithm and a simulate
annealing-related algorithm. We have applied our method t
four differenttypes of orbit transfers around the Earthanel
orbit transfer around the asteroid Vesta. The optimizatibn
the Q-law yields the greatest benefit in the case of the most

7. APPENDIX

athematically, a multi-objective optimization problem i
expressed as

{y1(x), -

{Ilv"' ,SCN}GX,

s ym(x)} €Y, (Al)
(A2)

minimize y

where x

andx is the NV dimensional decision vectay,the M dimen-
pional objective vectoiX the decision space, arid the ob-
jective space.

Within the multi-objective optimized problem, a nondomi-
nated solution is the solution that is not dominated by any
d_other feasible solutions. The condition for the solutidnto
gominatex” is given by [6] [12],

Vie{l, -, M}, y(x*) < yi(x?)

A Fie{l, MY yuxY) <ux).  (A3)

complex of the five orbit transfers considered, although lesTne second condition ensures tydk®) # y(xP).

complex cases also benefit. The resulting Pareto front with
the optimized Q-law shows a propellant savings as large as
30% in comparison with the nominal Q-law, and the Pareto
front contains the optimal solutions found by other trapegt 1]
optimization algorithms.

In optimization problems, there is always a trade-off betwe (2]
the optimization quality and the computational requiremen
Most of the efficient/fast optimization tools tend to yietau-
quality solutions while high-quality optimization toolertd  [3]
to require large computational resources. Both high qual-
ity of optimization and low computational requirement are
needed in the early stages of mission design, where ma ]
possible scenarios are considered. Our method offers bo
the high optimization quality and the high computational ef
ficiency. The trajectory quality of our method is shown to be
as good as that of other state-of-the-art optimizationstool
Our method yields not only a few Pareto-optimal trajecto-
ries but also an accurate Pareto front for a given orbit feans
within a few hours of computation time. The computational
efficiency arises from both the efficiency of the Q-law in ob- [6]
taining a candidate trajectory and the natural paralleligm
GA/SA computation in evaluating a population/ensemble of
candidate Q-laws/trajectories. 7]
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